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F. C. TODD 

STATUS OF STUDIES ON BUMPER PLATE PENETRATION AND SUBSEQUENT 

PHENOMENA 

SURVEY OF SCOPE OF THE PROJECTS 

Two closely associated projects are being solved with special consideration on the 

manner i n  which they interlock. The overall project i s  to obtain a computer program for 

the penetration of a thin plate of aluminum, i . e .  o bumper plate, by a sphere of rock, 

i.e. a quartz sphere. In addition to the penetration of the plate, the solution i s  to pre- 

dict the shape of the ejected cone of plasma with entrained aluminum fragments and 

perhaps some quartz fragments. A semi-empirical relation i s  sought to predict the ab- 

lation of the fragments to nothing as the fragments penetrate a stack of sheets of paper. 
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Finally, the cone of plasma impacts on the stack of paper sheets and the shock pressure 

i s  attenuated by the counter flow of the degradation products from the decomposition 

of the paper by the hot plasma. 

Phases from both projects are reported. One project coven the init ial Impact, 

the crushing of the sphere of rock, the break up of thc aluminum sheet and the con- 

version of the sufficiently shock-compressed regions of rock and aluminum into a plasma. 

The other project considers the ejection of a cone of plasma with entrained particles 

from the impact zone, i t  expansion as it traverses a region of free space and i t s  im- 

pact on a stack of paper sheets. The ablation of fragments in penetrating a stack of 

pc 7er sheets i s  a part of the last project. With this interlocking of the problems, the 

key study relates to the penetration of the plate and the ejection of cone of plasma. 

Problems in other phases must await the solution to this specific phase. This specific 

phase i s  a part of the proposed M . 5 .  thesis for Mr. Mcrk Hooker. 

At the initiation of these projects, a computer program was available which gave 

good results for the formation of a crG,er by the hypervelocity impact of a sphere of rock 

on a thick slab of aluminum. It wus proposed to adapt the solution for the crater forma- 

tion to obtain a computer program for the first part of the penetration of the thin plate. 

I t  i s  believed that a computer solution cannot be wirtten, without very special corrections, 

for the entire impact which includes the penetration of the bumper plate and the egress of 

the products of the impact on the bumper plate. The reason i s  that the aluminum of the 

bumper plate i s  ruptured by tension. At the instant of rupture, the continuum fails and 

a l l  of the equations fail since they are only valid i n  a continuum. After a "hand" correc- 

tion, the computer solution may proceed. 

Both projects ?ere tentatively assumed to require two years for a complete solution. 

This final repwt i s  written midway of the study, and is, of necessity, more of a long 

progress report than of a final report. Without reference to the separation of the projects, 

the overall study may be roughly divided into the following phases. These following 

phases are identified with the phase in  this report which treats this subject. 

(1) Adaptation of 'he available computer program for the formation of a crater to 

a program for the start of the penetration of a bumper plate. This phase i s  in  progress 

and the program i s  discussed under Phase 3 of this report. 
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(2) The technique for making the "hand" corrections when the continuum i s  

ruptured. This subject i s  under intensive study and a proposal i s  being formulated 

to continue the work next year. The discussion in Phase Three treats this subject, 

but does not enter into the subject i n  detail. 

(3) After sufficient compression up the Hugoniot curve, the adiabatic expansion 

wil l leave sufficient energy in the material so the material i s  properly classified as a 

plasma. The material which egresses from the impact zone i s  a plasma with entrained 

pieces of aluminum and rock (quatz). The expansion of a high energy plasma i s  dis- 

cussed in Phase Two of this report. A different equation of state i s  required for a 

short density range from solid density to 1/100 to 1/1000 of solid state density. After 

the insertion of this correction, which i s  available, the plasma calculation can be 

extended to solid state densities and to much lower energies. 

(4) The computer program for the formation oi a crater requires many corrections 

for the penetration of a thin plate. Many of the corrections have been made. I t  i s  

believed at this time, that corrections which arise from the interactions a: the boundary 

between the aluminum and the penetrating rock are the most important ones which remain 

uncorrected. The m r k  that i s  reported in Phase Three presents the present status of 

work on this program. 

(5) The plasma that i s  ejected from the bumper plate contains many fragments of 

aluminum and rock. The fragments are usual!) arwnd the circumference of the plasma. 

One phase of a contract i s  to derive a semi-empirical equation to represent the penetra- 

tion of the fragments into a stack of sheets of a special paper. After a second trial at 

the derivation, an analytical equation was derived and compared with the results of one 

experiment. Since there are three major constonts in the solution, the evaluation of 

a l l  three constants i s  not possible with the results from one experiment. The results of 

many more experiments are available, but tlie author only accepted the results from one 

at the start of this program. Many more experiments arid some fitting of equations i s  

necessary i n  order to obtain a semi-empirical equation. This work i s  considered in  

Phase One of this report. . 
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In the following report, there are three major phases discussed. These three 

phases do not exactly coincide with the above breakdown into five parts that are 

discussed in  this introduction to this report. Ir? the preceding l i s t  of five parts, the 

phase in the report to which the discussion most nearly relates i s  mentioned. The 

phases i n  the report are Ablation of a Solid Sphere by Penetration of a Stack of Sheets 

of Paper, Expansion of a Sphere of Plasma with Different Initial Energies, and Adapta- 

tion clf the Computer Program to a Solution for Meteoroid Bumper Penetration. 
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PHASE ONE 

ABLATION OF SQLID SPHERES BY PENETRATION OF A STACK OF SHEETS OF PAPER 

INTRODUCTION 

Ir. the ILlird Quarterly Report, the complete ablation of o sphere of rock by penetroting 

sheets of paper was considered. The force to decelerate the sphere was ossumed to have the 

form of Stoke’s law for the frictional force on a sphere falling through a viscous liquid. The 

solution was obtained, with some difficulty. On comparison with experiment, the coeffi- 

cient of viscosity was found to be ridiculously low. I t  was less than the viscosity of water. 

Stoke’s law assumes that tt,e losses are distributed through a substantial volume, and the 

affected volume extends flom the surfcce of the sphere for some distance into the paper. The 

above result was interpreted to mean that the actual losses are very close to the surface of 

the sphere. Or this assumption, a new equation was formulated for the forces that o p ~  ose 

penetration of the sphere through the paper. 

In this report, the equo’ion for losses near the surface of the sphere i s  restated with a 

l itt le explanation of the basis on which i t  was formulated. A solution i s  eventually obtained 

in  terms of three basic constants. With the results from one experiment, i t  i s  not possible 

to evaluate the basic constants. It i s  feasible to evaluate a ratio between two critical con- 

stants and to evaluate this ratio over the range of values which are ossumed to be of in- 

terest. 

The derivation of this equation i s  given in  detail. If there i s  sufficient financial support 

for the author to complete the problem, the sponsor wil l have no difficulty in  employing 

experimental results i n  order to ascertain the merit of the equation. At this time, the author 

wishes to acknowledge the exceedingly helpful assistance of u graduate student, Mr. Mark 

Hooker. Mr. Hooker i s  working on a thesis to fulf i l l  part of the requirements fc, his M.S. 

degree. His assistance to the author was most valuable in  checking equctions and signs. He 

wa; also tnost helpful in  discussing the study. In addition, Hooker i s  entirely responsible for 

the technique by which the variables were separuied in  order to calculate u in  terms of r. 

The author’s original concept of the plug, ahead of the sphere, was that i t  had the shape 

of a cylinder. A!. shown in Figure 1, the plug i s  really a very thin :hell that i s  ahead of the 

sohere. Fror +hi: difference, there should be a numerical constant inserted i n  the first term 

or8 the right of the equality sign. Inqtead of the term n r  1 r a i  u for the mass of a cylinder, 

the term should read 2 n r ”  .4,r n, for the mass of o thin hemispherical shell. 

2 
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STOPPING OF A SPHERE BY PENETRATING PAPER 

In the third progress report, i t  was shown that an absurd!y low value i s  obtained for 

the viscosity, 11, when the drag on a penetrating sphere i s  represented by Stoke's law. The 

low value of 

sphere. In the derivation of Stoke's law, a particle in  linear motion i s  restrained by 

viscous forces in a liquid with laminar, or "streamline" flow. This distributes the frictionul 

losses through a considerable volume that surrounds the path of the penetrating sphere. The 

low value of 7 from the application of Stoke's law to the experimental data indicates that 

the loss cannot be in  a large volume but must be in a small volume and this requires that the 

losses be very close to the penetrating sphere. 

indicates that the actual losses are concentrated very near the penetrating 

In  order to confine the loss to close proximity to the sphere, a new relation i s  sought. 

In this refation, the losses are represented by two terms; (1) the force to accelerate the ma- 

terial in a short column ahead of the spk. re to the velocity of the sphere and (2) the force 

necessary to move the sphere and column against the restraining, frictional type forces that 

surround i t  and any force that i s  required to shear the material. The first term depends on 

the instantaneous projected area of the sphere. In contrast, the second term i s  the shear and 

friction of moving the accelerated material into the stack of paper. In  words, the equation 

may be written 

Force to 
decelerate sphere = 

Force to accelerate a 
a column of thickness plus force a plug through 
4 and area n r' 

Force to shear and 

the hole 

au 
dt  

+ 2 n r C r S -  

4 
In the first term or1 the left of the equality, 

trating sphere, vhen o i s  the density of aluminum. 

term becomes the momentum. The differential of the momentum i s  the force in dynes. 

Similarly, T'r'' 1 r ni i s  the mass of a circular plug of the paper materiai that i s  accelerated 

ahead of the entering sphere. I t  i s  believed that thi:: Taterial piles up to an undetermined 

thickness, I r ,  and then permits the sphere to squeeze through i t  with added friction which 

i s  given in the last term. 

nr'a i s  the instantaneous mass of the pene- 3 
When the mass i s  multiplied u, this 

By multiplying the first term on the right of the equality by the 
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velocity, u, the momentum i s  obtained and the rate of change of momentum with time 

i s  a force in  dynes. 

The final term on the right i s  the effective frictional force as the circumterence 

of the sphere i s  forced through the plug c f  material that i s  formed according to 

the fint term on the right. The force in  dynes i s  obtained by multiplying by the accelera- 

tion. The term, S, i s  the force in  grams/cm'? of wall area of the plug which has a cir- 

cumference of 2 n r and a length of 4,r. 

The variables in the equation may be obtained in  a more generally applicable torm 

Partial I y collecting terms 

Continue to collect terms 

($  r r p  - n ' , p l )  n4,p l r3+2 n t S r 2  - 4 3 V P ~  3)dU dt 

dr 
Solve for - 

dt 

This equotion may be rewritten i n  a form for use in  the calculations. 

Solution of Simultaneous Differential Equations for Relation between u and r 

With the differential equation that i s  derived above and with the iwo others that 

were derived in  the third progress report, there are three differential equations to solve 

simulianeously for the three independent variables r, u and Q. These simultaneous 
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differential equations are collected here. 

This equation comes from the definition for the l i t  

the flow of heat in  calories per second. The term, D, i s  3n *.adju-table constant'' 

which replaces the term 

flow of heat. The term- dcj i s  
dt 

dT 
K- 

dr 

where K i s  the thermal conductivity of the bunched and compressed material which i s  

just outside the surface of the sphere. The term - i s  the effective temperature gradient 

i n  this material. 

dT 
dr 

The second differential equation was deribed in  the preceding section. This equation 

was derived from the forces acting on the sphere on the assumption of "localized forces". 

I t  has the form 

!~.r this relation, r i s  the instantaneous radius of the sphere that i s  penetrating the paper, 

er i s  the effective thickness <*if the ''plug" of paper pushed ahead by the sphere, S i s  the 

shear force which opposes tnc rovement of the plug, P i s  the density of aluminum and PI 

i s  the detkty of the paper. The instantarieous velocity at any instant i s  u. 

From the conservation of energy by equating the initial kinetic energy to the losses 

of energy, the following equation was obtained in  units of calories per second. 

In this relation, the values of P,r, u and t are the same as in  the preceding equations. 

Eliminate variables i n  order to simplify the equations. Start by equating equu- 
dQ tions (1) and (3) in order to eliminate - 
dt 
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dr du 
This equation wil l eventually be solved for - and - 

dt dt 
may be formed into the sum of two differentials. 

As the first step, the equation 

Divide this equation by 3r"u' and transpose one term to the right s i d e  of the equality 

dr - 4 r;D 1 2 r du 
dt - -  1 . 6 6 8 5 X l o - " P  3 7  -5;;dt (4) 

Among the three simultoneous equations for solution, there i s  onother differential equa- 

tion for- jr This i s  Equation 2 above and i s  rewritten here for realy tvferenc . dt * 

The terns on the right hand side in Equations 4 and 2 may be equated to each other 
dr 

since both are equal to - 
dt . 

4 n 0  1 2 r d u  
l . W x  10'"o 3u" -3;  dt 

du 
Rearrange the terms in  order to factor out - 

dt 

In order to simplify this relation, multiply through by -3. 

( ( 4 ~ - 3 4 )  r - 6 4 s  - 2 r )  u x  du - - 4 n D  
1.6685 x lo-" P 4n-  3 Po, 

In order to further simplify the relation, introduce the constants P, , P a ,  and P, where 

the constants are defined by the following relations 

introduce the new constants and further simplify 



10 

Obtain a common denominator and rearrange the terms 

(P3 =P, 

du 
dt 

This i s  an equation for - i n  terms of the variables u and r and of the constants PI, Po 

and P,. 

The next step i s  to use the some two Equations 4 and 2 in  order to obtain an expression 
dr du 

for -. Pmcoed by obtaining an equation for - from Equation 4. dt dt 

d u -  3 u d r  3u 1 
dt 2r dt 2r p1 - - - -  --- 

Now consider Equation 2 and modify i t  in  order to obtain an equation with the constants 

inserted. With a slight rearrangement, Equation 2 becomes 

dr - -3 l o r r  - @ ~ r + 2 k S  - -  1 du - - -- 1 rP, +P,  1 du 
d t - - 3  4 0 - 3 l p 1  u dt 3 Pa 5dt 

du Rearmnge the above relation in order to solve for - dt 

d u -  & Pa dr 
dt-- rP,+P, dt 

du 
In order to eliminate - equate Equation a to Equation b. dt 

3 u d r  3u 1 P dr 
rP,+OP, dt 2 r d t  2r 3u 

7 P I  = - 3 u  - - - -  
Divide both sides of the equation by -3 and rearrange terms 

Con:inue to simplify this relation 

Pa-rP, dr 
-3u  - =P, 

P,+P, dt 
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Starting with Equations 4 and 2, dr i s  obtained in  Equation 6 as a function of the variables 

u and r and of the constants P,, P, and P,. In Equation 5, * was obtained as a function 

of the same variables u and r and of the same constants. Equations 5 and 6 were obtained 

from Equations 4 and 2. No  variables or constants have been eliminated but the equations 

are in a different form. 

dt 
dt 

From an inspection of the relations i n  Equations 5 and 6, each equation may be solved 

f c r  the constant, PI. The two equations may then be equated to each other by the elimina- 

tion of the variable, Pi. 

P,- rP, du - P, - rP, dr 
p, dt P,+rP, Z u - - -  

After simplifying this relation, the following form i s  found 

In this relation, the variables are separated and integration may proceed at once 

A relation between u and r i s  necessary in  order to evaluate measurable quantities in  the 

experiment such as the length of path to stop the penetrating particle, or the length of 

path to completely ablate the sphere. 

In the above relation between u and r, a constant of integration should be added. 

From the manner in  which the equation w a s  integrated, the constant could be inserted i n  

several ways. In one method, the equation may be rewritten as 

In this case, the constant, C, may be considered as a multiple of the velocity, u. There 

wil l be no other reference to C until the discussion of the evaluation of the constants. 
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LENGTH OF PATH THROUGH THE PAPER TO STOP A SPHERE 

(Duration of Period of Penetration) 

From the relation between u and r that was obtained i r i  the preceding section, the 

length of path through the stacked sher ts  of paper may be calculated. There are two solu- 

tions for the length of path: (a) The length of path for complete ablat im of the entering 

sphere. This occurs wheq there i s  an excess of the init ial kinetic energy. jb) The length 

of path through the stacked sheets of insulation to stop the sphere with a finite, final radius, 

No entering sphere i n  the experimental range of sizes i s  expected to reach the rear rf 
surface of the stack of sheets of paper. I f  the solution from this study proves to be adapt- 

able to obrain reliable resu!ts, then i t  would be desirable to obtain a solution for the 

velocity and radius of a sphere which i s  either oversize and has excessive init ial energy i n  

order 1.: predict the radius of the sphere and the velocity at the back plate after i t  has pene- 

tra ted the insula tion. 

In order to make the desired computations, i t  i s  desircble to select three equations from 

the preceding section as the foundation for the studies i n  this section. The first of the three 

relations i s  the relation for - when - i s  eliminated from the equation 
du dr 
dt dt 

dr du 
The second of the three equations i s  the relation for - when - i s  eliminated from the 

equation 
dt dt 

:, P, - rP, dr = P, 
? R + P o  z - 3 u  

The final equation of the three equations i s  the relation between r and u which i s  obtained 

from the two preceding equations 
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Length of Path of Sphere i n  Stacked Sheets of Paper 

From the three Equations 5, 6 and 7, i t  i s  desired to calculate the length of path of 

t.k penetrating sphere i n  the stacked paper insulation. There are two distinct problems for 

wh:ch a solution i s  required. The length of path i s  desired (a) to stop the sphere by ablating 

i t  Q nothing and (b) to stop the sphere by ablating i t  down to an approximate sphere of finite 

rdius, r Start with Equation 7 but rewrite i t  in  a form that gives the value of u f '  

1 

ds TI1 s relation may be written i n  another form by recalling that u i s  - where A I i s  an element 

of length along the path of penetration of the sphere. The new form of the above equation i s  
dt 

Introduce a new independent variable, r. 

(r +!a):3 ds dr= 1 
dr dt 

This equation may be rewritten in still another form 

dr The volue of - i s  known from Equation 6 and on substitution, the relation becomes dt 

Now insert f'te value of u'! from Equation 7 

Simplrfy the above elat ion by collecting terms 

('2' tp,'l)"'(- p, ) - -  dr 
-ds 

aeparate variab:es and put in  a form for integration 
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Since the preceding integral i s  rather involved, the terms on the right are inte- 

grated one by one. After integration, the separate solutions are reinserted into a single 

equation. Consider only the terms in the fractions that are involved in  the first term on the 

right in  the last equation above. The expression to be integrated i s  

1 

From a table of integrals, there is a substitution for this type of tern. The substitution 

requires that y 5 o + bx, then tables of integrals show that the following relation exists 

J(a + bx)m dx = lJymdy 
b 

For the integral under consideration, m = - 19, a = P,, b = P, . With these substitutions 

The invclved terms in  the second expression for integration are 

j& 
From a table of integrals, there i s  a substitution when the following identity hold for this 

type of equation, y f a + bx. The relation from the table of integrals i s  

For the integral under consideration, the following relations hold: m = 10, n =  1, a = P, 

and b = P, 

With these subs t i  tu tions 
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Now coliect all of the terms and reinsert them in Equation 8. for an integration without 

limits, such as this one, a constant of integration, C, must be added after the simplifica- 

tion i s  completed. 

Simplify by several steps, change signs through the equation, multiply by P,, and com- 

bine terms 

Put the equation i n  i t s  final form and add the constant of integration, C 

The preceding relation, Equation 9, i s  a general equation with the length of 

path, s, and the radius, r, of the sphere. This equation may be evaluated between 

several limits. Two sets of these limits are of particular merit i n  evaluating the unde- 

termined "constants" that are in  this equation, One set of l imits corresponds to a sphere 

of radius, r that enters the stack of paper at the start of the path of penetration, s = 0, 

and i s  completely ablated, r = 0, after a path length, s 

pond to a sphere that i s  not completely ablated and stops i n  the stack of paper. This set 

of l imi ts  corresponds to a sphere or' radius, r , that enters the stack of paper, s = 0, and 

0' 

The second set of l imits corres- f '  

0 
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i s  ablated to a radius, d , after traveling along the path of penetration for a distance, 

s . In other words, o portion of the entering particle i s  found in  the stack of paper at 

from the entrance of the particle into the stack of paper. a distance, 
a 

'd' 
The first set of limits, which are to be inserted, i s  for the spherical particle which 

i s  completely ablated as i t  penetrates the stack of sheets of paper. The limits for inte- 

gration for this set of conditions are: init ial conditions, s = 0 when r r r - and the final 

set of conditions, s = sf when r = 0. When limits of integration are inserted, there i s  

no need for the constant, C. Omit this constant and insert the above l imits of integration 

into Equation 9. 

0,  

On the insertion of these l imits, the following relation i s  obtained. 

Separate the terms with r from the other terms 
0 

Collect and simplify the terms in  this relation 

Solve for PI s and continue to simplify the terms f 

To recapitulate, this solution i s  for a sphere of radius, r which enters a stack of paper 

sheets at a length of path through the paper of s = 0. After traveling through the sheets 

of paper for a distance, the sphere i s  completely ablated. For comparison with this 

solution, derive the other practical example i n  the next paragraph. 

0' 

$f 
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Consider the other set of practical limits when an entering sphere i s  stopped i n  

the stack of paper before i t  i s  completely ablated. The limits of integration for this 

set of conditions are 

s = O w h e n r = r  

s = c d w h e n r = d  

In this set of relations, s 

0 

i s  the length of path through a stack of sheets o i  paper before d 
the sphere i s  stopped with a radius, d. The integral with the limits of integration becomes 

r = d  

r = r  
0 

With the l imits inserted, the relation becomes 

Separate these terms into two groups according to d and r , which are the final and the 

init ial radii of the penetrating sphere, respectively. 
0 

Continue to simplify and collect the terms in  the above relation 

Solve this relation for P s and simplify the terms I d  

(P )" 7P 9P d - ( P Z ) '  7P,-9Pa 
PISd=-%- (* 24 ( m y  

The preceding two Equations 10 and 11 are for the complete and the partial ablation, 

respectively, of a high velocity sphere which enters a stack of sheets of paper. One set 

of experimental data i s  available to evaluate the constants i n  Equation 10 but no data i s  

available to evaluate the constants in  Equation 11. 
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LIMITED EVALUATION OF CONSTANTS BY COMPARISON 

OF DERIVED €QUATION WITH A N  EXPERIMENT 

After the analytical form of the above equation i s  obtained, i t  i s  desirable to evaluate 

the constants. At this stage, over optimism must be avoided. The general equation wil l 

probably f i t  a very restricted range of the data and the equation must receive a mojor 

modification befor9 i t  may be applied to the general problem. Since there are three 

basic constants, P,, Paand Pn, these cannot possibly be determined by the results from a 

single test. (In order to keep close contact with the Sponsor, the author has only accepted 

the results from a single test up to this time.) With a single experiment, only a range of 

ratios may be obtained between the most sensitive "constants ' I .  In this section, this ratio 

i s  obtained for adjustments in  two sensitive "constants". The first step wil l be to restate 

the results of the one experimental test which has teen accepted by the author. 

In the third Quarterly Progress Report, the values are given for one experimental test. 

This information i s  for Experimental Shot No.  203. The incident particle w a s  an aluminum 

sphere with a weight of 0.010 grams. The init ial diameter of the sphere was 0.075 inches, 

or 0.1905 cm. For use in  the derived equation, the init ial radius, r , was 0.09525 cm. 

The initial velocity was 6.15 km/sec, or 6.15 x 10' cm,'sec. The length of path through 

the stack of poptr sheets in order to ablate the sphere w a s  about 8 cm. The mean density 

of the paper was 0.4609 gms/cm' which i s  less than half of the density of water. 

0 

The derived equation employs three constants, Pi , P 2 ,  and P, . These constants are 

defined in  the preceding derivatioiis. There are actually more than three constants, but 

for the following evaluation, i t  w i l l  be found that the most significant adjustable constants 

are in  P I  and in  P, + Pz ro . I t  i s  obvious that a single measurement cannot evaluate 

these three constants. I t  can only approximately determine a ratio between the two most 

sensitive "constants" among those which determine P I ,  P, and P, , 

The two most sensitive "constants" are P S  and D. 'Che active constant, RS, i s  the 

product of P, times a combination of tbe average shear and the average friction. The method 

of combination of these two facton i s  not known. The value, 9,, i s  defined by means of the 

product Ar where this value i s  the effective length, parallel to the direction of mot on, of 
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the friction surface around the circumference of the penetrating zphere. In the product, 

kr, f, i s  a pure number between 0 and 1 and r i s  the instantaneous raciius of the penetra- 

ting sphere. In other words, A S ,  i s  a combination that i s  proportional to the fryction and 

to the shear in  unknovm proportions. The sensitive 'Iccnstant", D, i s  representative of 

entiiely different factors. I t  was discussed extensively in  the preceding Progress Report. 

I t  i s  defined by the equation 

dT 
dr D = K -  

dT 
dr 

where K i s  the thermal conductivity ana - i s  the instantaneous radial temperature gradient. 

The defiqition applies to the region of damaged material which i s  between the undisturbed 

sheets of paper and the surface (probably molten) of the penetrating sphere. 

The equation for evaluation i s  Equation 10 which has the form 

The constants i n  this equation have the following values. 

dT 
where D = K dr 4 n D  

" =  1.6685 x 10 

As stated above, K i s  the thermal conductivity of the crushed and torn material that 

surrounds the penetrating sphere. The temperature gradient, -, i s  through this same 

crushed material in  the region which i s  just outside of the metal of the penetrating sphere. 

The numerical value ir. the denominator i s  for the purpose of converting calories and thermal 

conductivities into units which are compatible with the c.g.s. units in  the other differen- 

tial equations. The manner of obtaining this numerical value i s  disr;ussed in  detail in the 

third Progress Report. The value of D i s  not known and may only be estimated, A range 

of estimated ratios wil l be obtained from the experimental test, 

dT 
dr 

The corlstant, P, i s  given by the following relation 

Ps  = 4 0  - 3 1 0 ,  

The density, D , i s  the density of aluminum which 7s assumed to be 2.765 grams per cm' 

from various references. The :errsity, p i  , i s  the mean density of the stack of sheets of 
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paper. From the experiment that i s  referenced, the value of o 1  i s  0.4609 grams per cm3. 

This density i s  less than half of the density of water. 

The constant, P,, i s  defined by the following relation 

P, = - 6 t S  

There i s  no guidance known to the author from which to select numerical values for E and 

S. For the calculations that follow, a value of 10 grams per cm” i s  assumed for S .  Then 

values of a are assumed which give values of D which appear to be in  a practical range. 

The derivations of the three simultaneous, differential equations and the search for 

their solution has been i n  much more detail than i s  usual. This detail was added because of 

the great uncertainty as to the basis for the derivation. I t  wil l make i t  much easier to 

modify as comparison with experiments proceed. The insertion of numerical values i s  illus- 

trated by one solution which i s  reproduced i n  Appendix A. Three solutions have been ob- 

tained for different values of a which determine three values for D. These results are re- 

ported i,] Table I .  

Table I 

Values .,f D Calculated from Assumed Values of 

a D 

Pure Number calories 

cma sec 

0.01 12.90 

0.01 1 103.9 

0.012 1516. 

I t  i s  to be recalled that there i s  a minimum of three constants; P,, P, and P,. I t  i s  

obvious that a single experiment cannot uniquely determine these three constants. Actually, 

there are more than three constants and the author has chosen two of these constants to be 

more important and has assumed that they vary more rapidly than the others i n  range of 

particie size and range of penetrations tha: are represented by the one expeiirnent, for 

which data i s  immediately available. The choice i s  arbiirc-y and a butter choice might 

be made. The entire subject i s  so uncertain that i t  i s  discussed in  more detail in the next 

section. 
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DISCUSSION OF EVALUATION AND SIGNIFICANCE OF CONSTANTS IN THE 

DERIVED EQUATIONS 

In this sect:. n, ;andom comments are given on the evaluation of the "constants" in  the 

derived equations by means of comparison with experimental data. The derived equation 

must be treated as buspected of ro t  sctisfying ;he experimental data, For this reason, the 

experimenial data should be inserted in a way that w i l l  emphasize the deviation and permit 

the basic, differential equations to be modified in  order to be more correct, As an example, 

K must be suspected of being a function 9f the velocity, u, or of the radius, r, which 1s 

essentially the same thing, i n  this stage of the develapment. nts wil l 

range over a wide range of subjects, subheadings art employed although ma;. 

headings may only be a paragraph in length. 

Since these c 

he wb- 

Constants Involved in  the Evaluation 

For simplicity in integrating the differential equations, three constants are employed. 

These constants are P, , P, and P:, . As indicated in the preceding section, these three con- 

stants represent at least 6 constants: K, dr, P , P ~ ,  k and S. In practical examples, P 

and P ~ ,  are known i n  the most general cases without conducting an experiment t J evaluate 

them. The density of the 1 enetrating sphere i s  IJ, and the average density of the stack of 

sheets of paper i s  P,. Two of the constants are impossible to evaluate separately by the type 

of measurements that are presented in  the illustration in this report. These are K - where 

K i s  the thermal conductivity and - i s  the thermal gradient in a region of thickness, b r, 

which i s  just outside of the penetrating sphere. Minor modifications may be made i n  the 

experiments which wil l  permit separation of these constants. 

aT 

dT 
dr dT 

dr 

The constant, e ,  i s  difficult to define. The explanation i s  perhaps easiest to introduce 

by means of a sketch which i s  designated as Figure 1 .  As the sphere penetrates, i t  i s  assumed 

to coliect and accelerate a thickness, .Pr, of the debris from the degradation of the paper, 

The thickness of the added materials i s  I r  where 

radius of the sphere. This thickness only covers the entering hemisphere where i t  i s  accelera- 

ted by the moving sphere. From the numerical statement of this assumption, i t  i s  to be ob- 

served that the thickne-5 of the layer varies us the instantaceous radius of the sphere. In  

addition, there i s  a roughly cylindrical shape around the circumference of the sphere where 

i s  a pure number and r i s  the instantaneous 
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A .  Enlarged iphere for Material Collected Ahead of the Sphere. 

B .  Cylindrical Shape for Friction and Shear Against the Wall. 

Figure 1 .  Illustration of Material Collected Ahead of Spho re. 
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the crushed material that i s  ahead of the sphere "slides" between the largest diameter of 

the ''instantaneous" size of the sphere. This i s  also the position at which the penetrating 

mass shears the sheets of paper. This cylindrical shape i s  a friction surface OS the sphere 

penetrates. The comoined shear and friction i s  tentatively assumed to be expressed os S 

grams per cm". An entirely arbitrary, numerical vatue i s  assumed for 5 ,  since i t  i s  necessary 

on account of the manaer i n  which the init ial evaluation of the constants i s  made. The value 

of S i s  arbitrarily assumed to be 10 grams per cm: . This value may appear to be small but 

recall that the average density of the stack of paper i s  0.4609 grams per cmn", which i s  to 

be mmpared to 1 .O for the density of water. ir! oddition, the surface of the penetrating 

sphere i s  at the mi tlmum temperature which corresponds to the melting temperature of 

aluminum. 

Omission of up and u from the Evciuation of the Constants f 
In the numerical evaluation of the constants in Equation 10 by the insertion of the results 

of an experiment, a l l  of the experimental data i s  not employed. The values that are reported 

from the experiment are the init ial radius, rr, of the penetrating sphere, and the final rodius, 

0. The density of the penetraticg sphere i s  D and the average density of the stack of paper 

i s  p 1. The length oi the pa.:i, s for complete ablation i s  also employed. Neither Equa- 

t i m s  10 nor 11 contain u, explicitly. This i s  a consequence of the relation that was de- 

veloped between r and u. This relation wos obt ined from the simultaneous, differential 

equation from which the solution wos eventually determined. 

f' 

To obtain t?e final differential equation for integration, the velocity, u, WQS eliminated 

from the differential equations for integration. The velocity, u, was eliminated by using 

the relation that w a s  found between u and r. As a consequence, the velocity, uo, does not 

appear explicitly in  either Equation 10 or 11. From a single experiment, i t  i s  olmost im- 

possible 13 te l l  much about the velocity, u. By reference to the page where the relation 

between u and r i s  obtained, i t  i s  seen thut the most general solution requires a constant, C, 

which may multiply u. The consfant could be inserted in  another place in  the equation, 

but this position i s  perfectly general. Until the constant i s  evaluated, the substitution of 

u for r in  Equatior, 10 w i l l  only evaluate the 

be evaluated more easily by a direct substitution i n  the re!- 

atant, C. This conStant may, of course, 

'WIW.  en u,-, and r,. The 
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other apparent limit, the final rdius, r = 0, and the apparent final velocity, u =O, 
cannot be employed for the evaluation of C. The reason i s  that the following relation 

f 

i s  indeterminant when LI i s  zero. Division by zero i s  forbidden. I t  i s  very logical that 

u 

approach zero at the same time that the radius of the sphere becomes zeio. 

should not be employed when r = 0. I t  i s  not necessary t h t  the velocity should 

By reference to the equation between r and u, i t  i s  interesting to use the values for the 

constants, Fa and P, with the ratios that are reported in Table 1. With this substitution, 

the approximate values for C are given i n  Table 11. The equation that relates u to r i s  

given just above this paragraph. The following, Table I 1  extends the results in Table I 

in the preceding section. 

Table 11 

Values of C and D Calculated from Assumed Values of 

C k! D 

Pure Number Pure Number calories 

1.112 

.727 

.441 

cm' sec 

0.01 12.90 

0.01 1 103.9 

0.012 IS? 3. 

Evaluation of Constants with Restraints on the Variables 

The next step i n  the study of the equations for the depth of penetration i s  to evaluate 

the constants in  a wuy which wil l yield the most information on the nature ot any possibly 

omitted factor. Fr3m this information, the init ial, three differential equations may be modi- 

fied, or another equation may be added. The practical evaluation of the constank wil l  

probably depend on the experiments which have already been made. Since the number of 

experimenk for the evaluation af the constants i s  probably limited, the evaluation must 

proceed in a flexible manner while keeping the general objective in  mind. The objective 
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i s  to evaluate groups of measurements i n  different ranges of the variables. The equation 

i s  good provided the short range particles give the some values for the constants as the 

long range particles. 

To a ILmited extent, the variables ro, uo and s may be considered as the most probable f 
variables wtlich influence the secondary constants. The secondary, very critical constants 

are represented by D, ! md S.  If this selection i s  found to be correct, try to vary the 

variables over a limited range in order to emphasize the deviations i n  the values of the 

constants. As an example, consider one of the principle variables to be the length of 

path, sf. The observed lengths of path cocld be divided into four ranges; such as short paths, 

short intermediate paths, long intermediate paths and long paths. Use a l l  values of uo which 

give path lengths in one selected range. Evaluate the constants from the data for each range 

of sf. I f  the equations were correct, the constants should be the same for each range of s 

Then consider the same groups for the lengths of path, s 

of the penetrating sphere. The comparison of the difference in the results for u,, and ro 

should indicate whether the relation between r and u i s  acceptable. 

f '  
but select the intit ial rodii, ro, f' 

I t  should be emphasized that this manner of evaluating the constana i s  not the best way 

to obtain constants for the entire range of application of the basic equations, provided that the 

equations have been established to be correct. 

Discussion of the Values of the Constants as Determined by One Experiment 

There o three, grouped constants for determination, PI,  P,, and P,. These three constants 

canmt be evaluated from a single experiment, because there i s  not sufficient data to evaluate 

three constants. As indicated elsewhere, three representative ratios were determined between 

the important secondary constants, 1 and D. The evaluated ratios are in the range that the 

final values for these two constants i s  expected to occur. The values of I are ;n the range from 

0.01 to 0.012. These values indicate that the thickness of the collected layer of degradated 

paper, qhead ot the sphere, varies i n  thickness from 1 percent of +he radius of the sphere. 

From the differential equation that was derived, starting with the first page on this phose, the 

first term on the right side in  this equation i s  the rorce to accelerate this layer of paper frow 

at rest up to the velocity of the sphere. This term appears to be relatively negligible. The 

really significant part of 

bined friction and shear in the second term of the differential equation. 

i s  in combination with the constant S, which represents the com- 



26 

The really critical nature of the value of appears i n  the term, (P t P,ro). 

By reference to the definition of the cons:anh, P, = -6 

From the example for the evaluation of the constants that i s  given i n  Appendix A, the 

numerical values for evaluation are 

S and P, = 4 - 3 e p i .  

Negligible 
term 

0.56955 + (P )" 7 .5313~ 109D s = 
f *  

2 When S = 10 grarr> per cm and = 0.01 , the term on the right becomes 

From the numerical values, i t  i s  apparent that the length of path s 

varies os cn inverse function of f. 

i n  the stack of paper f' 

There are three cases for which the relative values of -6 1 S and P, ro should be con- 

sidered. In the first case, the value of -64 S i s  very much less than P 3 r o .  In this particu- 

lar case, the penetration of the particle into the paper w i l l  be relatively small. In the 

second case, the term, -6L S, i s  ini t ial ly smaller than P 2 r o  but approaches the value of 

P a r  . With this range of values, the depth of penetration increases at the start and then 

increases more and more rapidly toward infinity as the two values approach closer and 

closer. Finally, the third case, the value of -6a S > Pzro .  In al l  of the examples in  

this case, the length of path, s 

application for this equation. 

i s  negative and this case does not represent a legitimate f '  
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PHASE TWO 

EXPANSION OF A SPHERE OF PLASMA WITH DIFFERENT INITIAL ENERGIES 

INTRODUCTION 

In the introduction to this Final Report, i t  was indicated that progress was to be 

reported on four phases. T m ,  of the four phases of the work are concerned with the 

problem of the penetmtion of a bumpa plate of aluminum by a spherical stone of quartz. 

This phase, Phuse Two, i s  concerned with the expansion of a sphe:e of plasma. The 

third md r,ext phose of this report w i l l  discuss the progress on the earlv stages of obtain- 

ing a computer program for the penetration of a sphere of rock through a thin plate of 

aluminum. As the penetration by the rock proceeds, a shock front compresse: the volumes 

of aluminum and of rock in  the curvilinear squares by different amounts. Every shock 

compression increases the entropy of the compressed material. In the most general case, 

the expansion after compression i s  alorrg an isentrope, i .e. along a line of constant 

entropy. This general case would require some energy to be dissipated during the expan- 

sion. Metals thar are shock compressed, usually are considered to expand along an 

adiabot with no dissipation of energy. This means that after adiabatic expansion, from 

shock compression, the metal retains a considerable amounr of internal energy i n  the 

form of heat. This brief statement i s  an oversimplification of several papers, such as 

the paper by G. E. Duvall and G. R. Fowles,' and of other publications that are cited 

i n  this particular paper. 

The heat that i s  retained by the metal after shock corryession and adiabatic expan- 

sion to atmospheric pressure may range from simple heating of the metal, to producing 

molten metal , to producing a plasma. The total amount of heat i s  dependent on the magni- 

tude of the init ial  compression. The thesis by Hcrdage estimates that shock compression 

to 37-1/2 kilobars wi!! result in  leaving uluminum molten after i t  has expanded, adiabatically 

to atmospheric pressure, Shock compression into the megabar range converts the a1umini:m 

metal into an aluminum plasma. In the penetration of the bumper plate, the energy c m -  

tent i s  divided into kinetic energy and into internal energy for each of the mesh uolc;mes. 

As is customary with computer solutions, the solution i s  for finite differences. This re- 

quires al l  space to be divided into cubes, or regularly shaped volumes for Cartesian coordi- 
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nates. When sphericai coordinates cre employed, as in  this problem, the volumes for con- 

sideration are curvilinear cubes. For ecch of these cubes, the kinetic and the internal 

energy are given in  the computer print-out. Since the expansion i s  adiabatic, the 

internal energy of the curvilinear cube should not cnange during the expansion. This 

internal energy may be employed at any time ic identify the end product as a hot 

metal, a molten metal, or as a metallic plasma. As a consequence, a shift from the 

Mie-Griinesen equation of state to the plasma equation of state may be made at any 

time during the expansion. 

After a one by one change of the curvilinear cubes from compressed metal to com- 

pressed plasma, the expelled material from tile impact zone must continue to expand. 

More specifically, the material that i s  expelled by the rock penetrating the thin plate 

musi expand as a mixture of aluminum plasma, rock plasma, molten aluminum, molten 

rock, pieces of hot aiuminum metal and perhaps pieces of hot rock. The plasma portion 

of the expelled material wil l €,+and to interlace the entire mixture. 

For this particular phase of the problem for study, the oreceding discussion does 

not need to Le followed farther from a genercl viewpoint. I f  an aluminum plasma i s  pro- 

duced, i t  must be shown that this group has the capability to consider the expansion from 

a dense plcsma to c very tenuous plasma. The init ial bork on the expansion of a plasma 

by a member of thi: group was by  ii. E.  Bruce. The work on the expansion of a sphere 

of plasma was the subject of the P l i . 3 .  thesis by Dr. Bruce. This ex-student from this 

group i s  presently an Associa e Professor of Physics at the University of Texas at E l  Paso. 

The thesis by Dr. Bruce has been disiributed to the mailing list o n  this contract, as we!l 

as i s  presently recalled by the author. For this reason, reference i s  frequently made to 

his thesis, instead of to the original references. There are several parts of Dr. Bruce's 

thesis which were in  error. In particular, there are serious errors in the curves in the 

original thesis and in the manner In which the solution behaved near to the vertical 

axis along a diameter of the Spl;c.ie of rock. Dr. Bruce was paid, as a consultant, to 

come to UAH for the purpose oi teaching a preient student to run his program cnd to re- 

run the programs in the original thesis. In order for the reiults to be more reliable, the 

curves in  the remainder of this section are f iom the new tuns t y  Dr. R .  E .  Bruce. 
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GENERAL BASIS FOR A CALCULATION OF THE EXPANSION OF A SPHERE OF 

PLASMA 

For an understanding of the method of calculation, reference i s  made to Chapter V 

i n  Bruce's thesis. (pp. 77- 89) There i s  nothing particularly unique about the formula- 

tion of the equations. Scaler pressures are employed instead of tensor pressures. As i s  

usual for a scaler pressure, an equation of state was obtained. This equation of state i s  

unique as far as references were conceined at the time that the thesis was written. At 

the first of this calendar year, Bruce informed me that a similar equation of state with 

this elaboration has not yet been published in  the literature that he had investigated. 

The evaluation of the accompanying curves i c  this phase of this report requires an under- 

standing of the equation of state so this stibject i s  discussed in  the next section. Before 

proceeding with a discussion of the equation of state, two other subjects require some 

discussion. One subject i s  concerned with the effect of microfields and the other i s  the 

equation of state at extremely high densities. 

Microfields i n  Dense Plasmas 

A discussion of the microfields in  the plasma i s  essential for understanding the 

method of procedure. The subject of microfields wil l recur in this report, so a quick 

introduction i s  given here. In the plcsma, there are ions of various specie which are 

intermixed with sufficient electrons fo give a neutrcl plasma. As an example, a par- 

ticularly hot plasma may have AI'", AI a, AI t4 ions in a proportion thrlt may be 

predicted from their relative ionizatioq potentials in the plasma and from the applica- 

tion of Boltzmann's law. These ions and the matching electron cloud for neutrality 

produce microfields and these mictoficlds lower t i le ionization potential for the pro- 

duction of ions. I t  i s  irrmediately apparent, tnat increases ;r, the density of the ions 

and their accompanying electrons w i l i  increase the magnitude of the microfields acd 

this further lowers the ionization potential to produce the ions. 

The lowering of the ionization potential by the microfields w i l l  be considered 

again under the discussion of the formu1atio;l of the equation of state for the plasma. 
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The calculation of the number or each specis of iofis would require a total of 16 

simultaneous equations instead of five m d  probabiy From five to nine times the 

computation costs. In order to avoid this additionc I cost, an average ionization 

i s  calculated. This i s  a peculiar type of average that wil l give roughly the same 

characteristics in the plasma as the ti.iJc distribc;i;m of ions would give. 

average number of ions i:. the ominate for one or the  curves in most of the praphs 

that represent the expansion of the piasma. 

Th is  

Equation of State Employed for Subsequent Calci,!ntions 

In many studies of plasmas, the equation of state i s  taken as the perfect gas 

law. The perfect gas law considers the atcms to exert no forces on each other, 

except by collisions. 

pong balls; i .e. there i s  no interaction except for completely elastic forces which are 

active only when the balls collide with each other. 

a l l  of the terms in the equation of state, the reader i s  referred to Bruce's thesis. For 

the present discussion, the equation i s  presented and the nature of each term i s  identi- 

fied in very general terms. 

In other words, the atoms behave roughly l ike a cloud of ping 

For a complete description of 

In the presented equction of srate, there are terms which affect the plasma by 

different amounts in  different circumstances, and sornL terms may often be omitted. 

The general form of the equation i s  given i n  terms of the internal energy which i s  ex- 

pressed in  terms of the temperature and the density; i .e. the equation of state has the 

form E E(c, T). In every ccse, the plasma i s  considered to be formed of alumi- 

num atoms, ions and electrons. I t  i s  to be recalled that the plasma i s  always considered 

to be neutral; i .e. the plasma has no ne', average charge There i s  o minor exception 

to this general statement, there may be local charges that build up i n  oscillations be- 

tween the positive ions and an oscillating elecrrori cloud. These oscillations consti- 

tute one term in  rhe equotion of state. After this preliminary introduction, the general 

form of the equation of stat? is given by rhe  folioding relation: 

TOT , 

'TOT = E .  10 + E  10r.i + E~~~ + E~~ + E~~~ + 'RAD + 'OSC 
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In this relation, E 

in  some detail, but only in  sufficient detail to identify i t .  There i s  not sufficient detail 

to perform the calculation for each term. 

i s  the rota1 energy i n  the plasma. Each term will be discussed TOT 

The i i 6 t  component of the energy i s  E where the subscript i s  an abbreviation for 
19 

ideal. This term represents the kinetic energy i n  the perfect gas law. This energy i s  given 

by the relation 

'io-? - 3  kT ( C e + x C i )  . 
I 

where C 

specie, i. The ions include C 

that each electron and each atom has the some average energy. This relatiov i s  immediately 

recognized as 

represents the number of electrons and C. represents the number of ions of each 

which i s  the neutral aluminum atom. I t  i s  to be observed 
e I 

0 

1 ;! 3 
T m v  = - k T  2 

The second term i s  deisgnated as Th is  i s  the energy that i s  required to ionize 'ION' 
the different specie to form the plasma and this energy must be lowered to compensate for 

the effect of the microfields. FormaIly, the energy may be indicated i n  :he following 

manner 

There i s  difficulty in evaluating this relation when i t  i s  expressed in this particular form. 

The average ionization i s  calculated by a redistribution of the energy between a l l  of the 

different available forms or energy that are expressed in the equation of state. This re- 

quires reiterative calculations for the solution to converge on the proper number of ions 

with the necessary number of electrons to obtain a neutrai plasma. Designate the energy 

that i s  found by this calculation to be 1. Then the quantity, E i s  given by ION 

= I  - b , I  EION 

where h I i s  the Ecker and Kroll correction for the effect of tb: microfields on lowering 

the ionization potential. The technique for obtaining the averagt ionization and the 

lowering of the ionization potentiol by the kcker and K r o l l  method I; outlined in Bruce's 
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thesis. I t  should be mentioned thct Bruce says that he finds i t  necessary to reca!culate 

the convergence on every third cycle through the program. The last equatioc above i s  

given in order to emphasize the naiure of the soluiion that i s  obtoined 2nd i s  not a 

description of the mathematical steps that are employed. 

The third term on the right i s  E and this term represents the excitation energy EXC 
that i s  in the equation of state. 

ing to the maximum number of electrorls in the plasma and the possible levels in ..le 

ionized atoms and 'he degree to which the excit-d levels are f i l l e d .  The exciiation 

levels are fiI!ed according to their energy by the Boltzmann relation. A general, 

Every avaiiabie energy w i l l  t ,.e electrons i;7 i t  accord- 

analytical representation i s  
r. 1 

The term on the extieme right i s  the Boltzman relation for f i l l iqg the y excitation levels 

in the ions. There i s  a difficulty with this relation as solid density i s  approached, or as 

the density of ionization becomes very high. The microfields, in either case, exert suffi- 

cient forces on h e  ions to require quantization of the energy levels. This requires the 

application of the Pauli exclusion principle to limit The possible number of electrons in  

the excited states. This quan!iLation is important and i s  rner,tioned later in  this report. 

The fourth term i s  deTignatec! as E This i s  an evaluation of the energy that atises 

from the interaction of the microfields between the different particles in  the plasma. The 

specific name for the meihod of calculation i s  the configuration integral. 

IN * 

In more familiar terminology, i t  i s  referred to as the calculation of the cluster inte- 

grals for al l  particles, pair-wise. This i s  often mentioned in the literature as the two- 

body cluster integrals. The interaction energy I; calculated for al l  particles, considered 

two at a time. The correction to the equation of state i s  particularly important in deilse 

plasmas but trailed off to a negligible correction at densities from IO-" to lo.+ times the 

density of solid oltiminum. I t  decreases with the denslty until the correction becomes neg- 

ligible at the above limiting densities and the equation of stcte converges on the predic- 

tion of the perfect gas law. 
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The fifth term for the correction to the equation of state i s  E DEG, where the 

subscript refers to the degeneracy. This correction comes from the work of Wiqner and 

i s  described by Bruce. The term varies as the order in  the plasma decreases from the 

density of a solid to the density of a rarified gas. 

The sixth term i s  E for the radiation energy that i s  generated and i s  probably 

not trapped in the hot plasma. For plasmas in  the temperature and density range which 

are of interest for this project, this term i s  neglected. By neglecting the energy in  the 

radiation, the energy in  the sphere remains in  the sphere. I f  the energy were allowed 

to radiate, there would be a very diff icult correction tc the entire system of equations 

which i s  not of sufficient magnitude to be significant for the relatively low temperature 

and short duration of the plasmas for which these calculations are applicable. As an 

example, the expansion coald not be adiabatic i f  the rar’iation should escape. 

This term represents the energy in  the self- osc * 
excited oscillations of the electron cloud relative to the ions i n  the plasma. This i s  a 

diff icult term to evaluate so a partial correction i s  emplqed at this time. Thc: correc- 

tion i s  not large and additional corrections may be required for other plasmas. 

RAD 

The seventh and last ierm i s  E 

Limitation on this Equction of State 

The equation of state that has been presented i s  quite accurate until the density 

approaches solid state. The nature of the deviation i s  shown b;t the curves in Figure 2. 

These curves show the electron density as a function of the density in  grams per cm” 

for a constant energy added to the gas. For a perfect gas, the density of ionization of 

hydrogen gas may be calculated from the perfect gas law with the aid of Saha’s equa- 

tion when the added energy i s  known. In the cases to be considered at this time, the 

added energy i s  either 2 e\/ per atom, or 5 eV per atom. The lower curve in  each of 

the two graphs in  Figure 2 shows the electron density as a fuilction of the total density 

for 2 eV and 5 eV. according to the label on the graph. As the density increases to- 

ward the left in the graphs, the density of electrons continues to increase with the 

mass denri ty  . 
AS a consequence of the lowering of the ionization potential by the increased 

effect of the microfields, the density of electrons increase faster wi th  the mass density 
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than predicted by the perfect gas law in  combination with Saha's equation. This I; 

illustrated by the curves in Figure 2. The lower curve i s  the perfect gas law com- 

bined with the Saha equation. The middle curve i s  for the lowering of the ionization 

potential that i s  predicted by the Ecker and Kroll relotion. In every case, the gas 

i s  hydrogen. 

For hydrogen gas, alone, there i s  a third analytical method to check the magni- 

tude of the correction and this method i s  precise, except the solution depends on the 

amount of energy in  the other terms in the equation of state. The density of ionization 

may be calculated with the Schroedinger equation by employing the Yukawa potential. 

The Yukawa potential i s  for a central charge that i s  partially shielded, in this ca:e, by 

electrons. The calculated check on the ionization i s  the upper curve in the tH.1 graphs 

in Figure 2. From this check calculation, i t  would appear that the Ecker and Kroll 

relation does not predict enough ionization. Another sink i s  known for the energy and 

i t  has been investigated. 

The agreement between the top two curves i s  only fair and the agreement should be 

better. This conclusion follows from the evidence that the Schroedinger equation with 

the Yukawa potential gives an electron density that i s  systematically too high. The 

source of the error appears to be explainable. The interaction anergy, EIN, exists in 

the pldsma to which the Schroedinger calculation i s  applied, but no correction for i t  has 

been included in the data that i s  plotted. When the correction for the two body inter- 

action i s  included, i t  gives a lower electron density than the Ecker and Kroll result. At  

the same time, the curve with only the Ecker and Kra11 relation should be slightly lower 

because of the three body, cluster integral correction on the energy content, The three 

body cluster integral i s  mentioned below. I t  i s  to be emphasized that the actval correction 

and :he added corrections have .,ot been calculated although only arithmetic operations 

me necessary. 

In the calculation of E the interaction was found on the basis of cluster integral 

zalculutions on the so-called two body basis. An investigation showed that the incluston 

of three body forces woulo reduce E 

be exceedingly iow and would have a negligible effect. In  a M.S. thcsis for the Mathe- 

matics Department at Oklahoma State University, Mr. H. A .  Reeder calculated the three 

IN ' 

I t  was also shown that four body interaction would IN ' 



Figure 2. Equation of state plotted for hydrogen as a log-log relation between the 

electrcn density vs the mass density for a total average energy of 2 eV 

per atom in the upper graph and 5 eV per atom in  the lower graph. At 

the uppet l e i t  in  both graphs, the curve splits into three parts to repre- 

sent the ef fect  of lowering the ionization potential of hydrogen (a) the 

upper branch represents hydrogen as calculated by the Schroedinger 

equation with the Yukawo potential, (b) the intermediate branch by the 

Ecker and Kroll relation and (c) the lower branch contains no correction 

and comes from the perfect gas law and the Saha equation. 
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body cluster integral. The three body cluster integrals wete for hydrogen and Reeder 

omitted the terms in  the three body cluster integrals that were not symmetrical. For 

ionized hydrogen, these unsymmetrical terms could not exist. His results are given 

for an added energy of 5 eV. There i s  a graph from his  work which i s  designated os 

Figure 3 i n  this report. The upper dotted curve i s  Bruce's tw body caIcuIations, the 

dahsed, intermediate curve i s  Reeder's cclmlation with botn the two body and the 

three body t e r n .  T h e  lower curve i s  the calculation from the perfect gos law and 

Saha's equation. 

PRESENTATION OF RESULTS 

With the complex equation of state that har been derived, the expansion of a 

sphere of plosma i s  very different f rom on expansion with the perfect gas law as the 

eqmtion of state. The principle effect from the extended equation of state i s  a conse- 

quence of '!-,e term for lowering the ionizatim potential and the term for the internal 

energy i n  the microfields, E Before presenting the graphs, a few general comments 

are d e  .an the overall object of the computation for the expansion and on the general 

assumptions for the computation. 

IN - 

General Statement of the Problem 

The cor,,puter calculations are to obtain the solution to a "gendanken" experiment. 

In this experiment, a sphere of solid aluminum is considered. At time, t = 0, each 

atom in the sphere receives the same amount of energy. In this report, there are three 

computer solutions with the added eltergy p r  atom at 44.45 eV, 20.8 eV and 7.136 eV, 

respectively. The soli;tion is  calculated in  terms of dimensionless variables. In the 

presented graAs from the solution, the dimensionless variables have been converted to 

dimensions. The init ial  radius ot the sphere i s  about 4 x lo-" cm. The abscissa of the 

graphs i s  dimensioned in terms of this starting radius m d  the graphs show the growth of the 

radius as the plasma expands into a vacuum. 

In the preceding discussion, the conditions for the soiution are discussed in  con- 

siderable detail. One very basic condition has been assumed without a specific state- 

ment of the postulate up to this time. This condition requires that equilibrium must exist 
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Figure 3. A log-log plot of electron density against .he mass density for a hyd-ogcn 

plasma. As i n  Figure 2, the cur\.e divi&S i r t o  three branches in the ;ppcr 

le f t  comer of the graph. These three branches show the effect of increas- 

ing the accrrracy of the equation of state by means of a more precise calcu- 

lation of E 
effect of the two body cluster integrals on the density of electrons. (b) The 

intermediate branch of the three branches shows the effect of tw body cluster 

integrals plus three body, symmetricai componentr only, on the density of 

electrons. This i s  the most accurate curve in the group. (e) The lower 

branch in the upper left i s  for the perfect gas law and the Saha equation with 

no correction for ?he intemction fields. 

in the equation of state. (ai The upper branch shows the 
IN 
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at a i l  times. In particular, this requires that ions and excited states exchange energy 

instantly. This requirement cannot possibly be correct. The mean l i fe of an AI" ion 

i s  about 12 x lo-' seconds. This value wus read from a curve that was part of the Ed.D 

thesis of Dr. Vernon D. Brown. Brown i s  presently an Associate Professor at Memphis 

State University. The mean l i fe of aluminum ions with a higher state of ionization, 

such as AI ".I, 

comes directly from the application of the uncertainty principle. The first expansion 

with an init ial energy of 44.45 eV per a+om i s  followed for a total time of 5.861 x lo-' 

seconds. Ions of and would certainly radiate in this time interval but not 

AI". A correction for the mean l i fe wil l certainly change the form of the solution, 

but the correction i s  very involved. I t  i s  desired, therefore, to have the solution for 

instantaneous equilibrium. 

and AI'" , i s  much shorter. This conclusion of a shorter mean l i fe 

In the solutions that are presented, the energies are rather large. The reason for 

selecting these energies i s  to avoid, as much as feasible, an expansion i n  a region with 

densities near to solid state density. The multi-corrected equation of state d o a  not have 

a good correction for that region. A better equation of state i s  available from the work of 

Larry J .  PeeTy. Peery obtained the correction i n  his Ph.D. thesis while working with 

this group. Peery i s  presently a Professor at Central Methodist College at Fayette, Mo. 

His improvement i n  the equation of state consisted of a careful interpolation from (a) the 

accurate equation at mass densities for lo-: to 10- 

of solid aluminum. 

grams per cm3 to (b) the density 

Expansion of a Plasma with an Initial Energy of 44.5 eV per Atom 

The first graph of the expansion i s  for an instant of time that i s  very soon after the 

expansion starts. As shown in  Figure 4, the exact time i s  0.6845 x lo-" seconds after 

the start of the expansion. The density i s  constant at the origin and i s  the initial density; 

i .e. , the density of solid aluminum. The average ionization potential decreases i n  two 

steps with a break in  the slope between the two rates. The break i s  near an average 

ionization potential of about 3 eV. There i s  a corresponding small hump in  the density 

at the same radius. Thic hump i s  slightly masked in  the reproduction. The discontinuity 

at about 3 eV indicates that this i s  probably an ionization potential, or perhaps an 



41 

,a ' UO!+DZ!UO~ 0 0 0 0 0 0 
m d m cv c 360.1 ah w 9 

E 
0 
0 
c 



42 

excited state i n  the aluminum plasma. I f  this explanation i s  correct, more breaks 

should be observed in  the graphs for other time intervals. 

The second graph in  Figure 5 shows the Expansion at a later time, 1.372 x 10'' 

seconds. The peak density has decreased by almost a factor of 10 from the density in  

the preceding graph. The average ionization potential shows two peaks, there i s  one 

at about 3 eV, which appears to be the same one as i n  the preceding s.aph, Figure 4. 

There i s  a second break i n  the slope of the average ionization potential at a l i t t le over 

1 eV. These breaks indicate that the conditions at the two radii are such as to empha- 

size an ionization potential, or an excitaticn ievel. Recall that the ionization poten- 

tials are finite and are seprated. The Boltzmann relation i s  exponential so  the curve 

i s  not symmetrical between the levels. 

As time continues, the expansion continues but assumes a different form. The ex- 

pansion at 2.059 x lo-' seconds i s  shown in Figure 6. The density has dropped almost 

another factor of 10 from the preceding figure. The most startling difference i s  that the 

density decreases i n  the center of the sphere and the density i s  starting to form a cold 

shell of plasma outside the hot core. The hot and cold plasmas are identified by the 

average ionization. I f  the average ionization i s  of the order of 4.5 eV, the plasma must 

have a high internal energy. Conversely, i f  the average ionization potenticil i s  nearly 

zero, there i s  not sufficient internal energy to be hot. There are humps in  the average 

ionization which correspend to average ionization, or excitation potentials such as were 

identified in  the preceding graphs. 

As the expansion continues, the formation of a hot, low density core becomes more 

clearly established. This hot core i s  surrounded by a cold, high density shell. This i s  

demonstrated by the curves in  Figure 7 which i s  for a time of 2.746 x 

the expansion starts. A closer inspection of the curves i n  this figure show that the average 

ionization at the center of the sphere has increased over the value at the center of the 

sphere in the preceding graph, Figure 6. This indicates that a hot core forms, and in  

additon the average ionization, or the effective temperature of the core also increases. 

In the last of the expansion curves for an init ial energy of 44.45 cV,  the hot core 

seconds after 

and the cold shell have fully formed. This expansion, at 5.861 x lo.-<' seconds after 

the start i s  presented i n  Figure 8. The average ionization in  the hot core i s  even higher 
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than the init ial average ionization. The initial average ionization from the computer 

print-out i s  5.011 eV. In the hot core in  Figure 8, the average ionization i s  5.550 eV. 

In this and in  the preceding graphs, the average ionization has been used as an indica- 

tion of the temperature. In this graph, the temperature i s  plotted. The temperature i s  

the curve that piunges off the bottom of the page in  the center of the plot. Al l  of the 

ordinates in this graph are linear und all of the curves except the temperature have zero 

at the bottom of the graph. In order to determine the extent of the decrease in  tempera- 

ture, a plot of the temperature and the pressure are shown in  Figure 9. This data i s  for 

the same instant of time cs Figure 8. The ordinates for both the temperature and the 

pressure are logrithmic. I t  i s  to be observed that the temperature has decreased over 

three decades at a radius that corresponds to the peak of the density i n  the cold shell. 

A short summary i s  presented of the most obvious facts that are disclosed by the 

graphs for the expansion of the very high energy plasma. 

a. The expansion forms a hot core that i s  wrrounded by a cold shell. 

b .  iiumps cn the curves for the average ionization indicate the existence of the 

levels h r  ionization, and/or excited states in  the plasma. This information was given 

to ihe cocdputer by the E term in  the equation of state. EX C 
c. The cold shell i s  really rather cold aacording to the computer print-out . 
The less obvious facts wil l be presented after comments are made on the remainder 

of the curves. Thew i s  one subject that should be mentioned. The hot core with the cold 

shell i s  an intrincically unstable condition. By light emission during the formation of the 

cold shell, its formation has been confirmed. Before the shell has the density range in  

Figure 8, tne shell becomes unstable and breaks up to reveal the hot core. The break-up 

has been confirmed by the intensity of the emittzd light. 
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Expansion of a Plusma with an Init ial Energy of 20.8 eV per Atom 

For comparison with the description of the expansion of a sphere of plasma with 

very high energy content, some graphs are presented to show the expansion of a plasma 

with less than half of the high energy in the first expansion. The actual energy con- 

tents are 20.8 eV per atom in contrast to 44.45 eV per atom. The same number of atoms 

are involved in  each case. 

The first graph for the expansion i s  given for a time of 1.108 x lo-" seconds aftc r 

the start of the expansion, The curves in this graph, Figure 10, are for the lower energy, 

20.8 eV per atom. They are to be csmpared with the high energy graphs that are pre- 

sented i n  Figure 4 and Figure 5 which are for 0.6845 x lo-" seconds and 1.372 x lo-" 
seconds, respectively, after the expansion started. The curves for the lower temperature, 

i n  Figure 10, show a slower expansion of the high density material in the core. This 

would be expected. The breaks in the curves for the average ionization cre more pro- 

nounced than at the higher temperatures. A break in the average ionization still occurs 

near the average value of 3 eV. The exact value fluctuates about the 3 eV level. This 

i s  to be anticipated and depends on the density, the temperature, the location of excita- 

tion levels and other factors. 

As the expansion continues, the density sti l l  corresponds to the init ial soiid state 

density although the expansion started 2.261 x 

The "knees" in the average ionization curve are more pronounced than ever. 

seconds before the curves in Figure 11. 

As the expansion continues, the start of the formation of the hot, low density core 

i s  well defined in  Figure 12. This graph illustrates the state of the expansion and of the 

aveiage ionization after 3.413 x lo-'' seconds. There i s  nothing particularly new with 

respect to ti;e results in other graphs. 

The hot, low density co;e i s  well defined i n  the next graph. The set of curves in  

Figure 13 were obtained 4.565 x 10'" seconds after the start of the expansion. The curve 

for the average ionization looks rather distorted from the presence of strongly emphasized 

ionization and/or excitation levels near 3.0 eV and below 1 .O eV. This i s  upproximately 

the relative distribution between hot core and cold shell at which the combination be- 

comes so unstable i n  the practical case that i t  breaks up, or more probably, i t  just de- 

composes. This i s  a highly arbitrary conclusion, although there are a few threads of 
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evidence from the light emission. These are the experiments that have been reported 

by Brown. 

The last graph for the expansion of the plasma with an init ial energy of 20.8 eV 

per atom i s  designated as Figure 14, This graph shows the expansion at 9.808 x lo-" 

seconds after the start of the expansion. An observation of the graphs indicate that the 

expansion has been computed far beyond the l i m i t  at which a practical plasma would be 

expected to become so unstable that i t  would disintegrate. The average ionization curve 

has become rather smooth but i t  s t i l l  shows evidence of the 3.0 eV and the 1 .O eV ioni- 

zation and/or excitation levels. 

In comparing the graphs for an init ial energy of 20.8 eV per atom with the preceding 

graphs for an init ial energy of 44.45 eV per atom, i t  i s  difficult to select the most impor- 

tant factor on which to concentrate. A very interesting subject appears to be the approxi- 

mate mean radius of the expanding sphere when the density in  the core has just dropped 

into the range from 0.1 to 0.2  x lo-' grams per cm3. For the higher init ial energy, this 

radius i s  in the range between Figure 7 and Figure 8. The subjectively chosen value i s  

0.0027 cm. In a similarly unreliable manner, the radius i s  chosen just later than the in- 

stant that i s  represented in  Figure 13. Then for the init ial energy of 20.8 eV per atom, 

the value of the radius i s  taken to be 0.00202 centimeters. Without reference to the time 

that i s  required to expand to these limits, i t  i s  observed that roughly similar conditions 

exist between the hot core and the cold shell at the time that these radii were selected. 

These values are selected while the curves are i n  close proximity to this discussion in  

order that they may be easily inspected. There w i l l  be a discussion of these measurements 

after the next set of graphs i s  presented. 

Expansion of a Plasma with an Init ial Energy of 7.136 eV per Atom 

In order to acquire more information on the effect of the total init ial energy on the 

expansion of a sphere of plasma, some curves are shown for the case when +he total init ial 

energy i s  7.136 eV per atom, This energy i s  less than 1/6 of the total energy for the case 

when the initial energy was 44.45 eV per atom. 
, * .. v v t h  this lower energy, the most important question i s  to determine i f  the cold shell 

s t i l l  forms aromd a hot core and the approximate time that i s  required for this shell ta be- 

come roughly formed. The curves in  Figure 15 represent the state of formation at 4.636 x 10- 
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seconds after the start of the expansion wher the init ial energy was 7.136 eV per atom. 

At this time, the hot core i s  starting to form and the dense: cold shell i s  beginning to 

narrow into a peak. The density, as reported by the scale of the ordinate, i s  down by 

a factor of about 20 from the init ial density. 

As the expansion continues, the curves in Figure 16 show the expansion at 7.059 x 

lo-' seconds after the start of the expansion. The initial energy of the plasma was 7.136 eV 

per atom. The curve for the average ionization clarifies some of the up and down variation 

in the position of the ionization and/or excitation levels near 1.0 e\/. In other curves, the 

level sometimes appeared to be above 1 eV and sometimes below that level. Actually, 

there are three levels. One i s  near 1.3 eV, a minor level i s  near 0.9 eV and a very strong 

level is  at 0.6 eV. The peak of the density i n  the cold shell i s  desired for the same pur- 

pOSe - 
DISCUSSION OF THE SIGNIFICANCE OF RESULTS FROM THE EXPANSION OF PLASMAS 

Some superficial results are repeated to start this discussion. These superficial results 

were collected at the end of the presentation of the curves on the expansion of the plasma 

with an init ial energy of 44.45 eV per atom. 

a. The expansion forms a hot core that i s  surrounded by o cold shell. 

b. Humps, or breaks, i n  the curvature of the curves for the average ionization indi- 

cate the presence of levels for ionization and/or excitation i n  the plasma. This informa- 

tion was given to the computer by the term that i s  designated as E in the corrections to 

the perfect gas law. These le\4ais are not fixed but may appear to be raised, or lowered by 

the effect of other terms in  the equation of state. 

EXC 

c. The curve far the temperature i n  Figure 9 shows that the sa-called cold cnell i s  

really cold. In this figure, the temperature falls over three decades within a radial dis- 

tance that i s  less than the width of the cold shell. 

After the preceding l i s t  of specific comments, there are two general subjects which 

require some discussion. The first subject deals with the formation of the cold shell. I t  

involves the means by which the high temperature and energy in  the init ial sphere i s  con- 

verted to a high radial velocity. After the comments on the cold shell, the second problem 
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for discussion i s  the probable evidence that the hot core i s  squeezed and s!owed in  

expanding. 

In the consideration of the first subject on the conversion of temperature to kinetic 

energy, the following facts are emphasized. There i s  no energy added to, or subtracted 

from the sphere during its "free" expansion into a vacuum. There i s  only a change in  the 

nature of the energy storage. Although the expansion into the vacuum i s  ''free", there 

i s  a change in  entropy as E decreases to zero with the expansion. I t  i s  to be recalled IN 
that EIN i s  the energy in  the microfields as calculated by cluster integrals. At the start 

of the expansion, al l  of the sinks of energy, which are indicated in  the equation of state, 

are fi l led and the values are placed in  the computer which i s  run until the distribution con- 

verges on the correct values. In this way, the energy distrlbution i s  i n  equilibrium. When 

expansion i s  allowed to start, the ions and electrons on the outside of the sphere start to 

move outward from the sphere, but only a small part go out radially. As time progresses, 

the motion of the outermost ions and electrons become more and more directed outward along 

radial lines. At the start of the expansion, a l l  of the kinetic energy i s  randomly directed. 

With randomly directed velocities, the temperature is given by the relation. 

where m 

are the same values for the ions and k i s  the Boltzmann constant. 

i s  the mass of an electron, and va i s  the mean square velocity. M 
e Ion 

and v2 

By +he formulation of the equation of state, the radially directed compments of the 

plcsrcla ? l w  i? no longer recorded as a temperature. The temperature i s  composed only of 

the rundomly directed velocities. As an example, the rate of expansion approaches a 

consr*-rtt as the sphere grows larger. This constant velocity i s  obtained when a l l  of the 

energy i n  the surface atoms i s  directed radially outward. As a consequence of the dis- 

appearance of the random velocities, the temperature falls to very low values as i s  appar- 

ent by the curve for the temperature i n  Figure 9. 

The second subject for consideration i s  the relative rate, of expansion in  the early 

stages while the hot core i s  being formed. The radius of the expanding sphere was esti- 

mated for the time that the hot core and cold shell were just barely formed. At the end 
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of the presentation of the graphs for an init ial energy of 20.8 eV, there i s  a collection 

of subjectibe data. This collection of data i s  to show the radius of the peak of the 

dense, cold shell at a particular instant i n  the expansion. I t  i s  the instant at which the 

hot core and cold shell are just developed and the lowest density of the hot core has just 

reached the range between 0.1 and 0.2 x grams per cm3. For an initial energy of 

7.136 eV per atom, the radius i s  taken to be 1.7 x lo-' centimeters. This data on radii 

i s  fragmentary and very subjective. There has been hesitation to add i t  to this report. 

The data i s  presented i n  Table 111. 

TABLE 111 

Subjective Data Illustrating Self-pressure of Hot Core 

Ratio 
Initial 

Initial Init ial r Predicted r 
Energy Energy 2.67 cm x r x  Rotio 

44.45 6.66 2.50 2.7 6.75 

20.8 4.56 1.71 2.02 3.45 

7.136 2.67 1. 1.7 1.7 

In Table 111, the columns have the following significance. The first column i s  ob- 

vious. The second column i s  the square root of the first column which means that the 

terms in  this cdumn are roughly proportional to the velocity of the final rate of ex- 

pansion. The third column ranks the relative rates of expansion. They are ranked 

relative to each other by means of the lowest energy term; i .e. relative to an init ial 

energy of 7.136 eV per atom. The fourth column gives ihe subjectively selected radii 

with no consideration of the instant of time after the start of the expansion at  which the 

radius was attained. The fifth column i s  the product of the subjectively selected value 

of r by a quantity that i s  proportional to the final rate of expansion. 

The values in  the right hand column are the radii that would be expected i f  no self- 

pressure was exerted on the hot core by the lowering of the ionization potential and by 

the energy in  the term F 

clusive. In trying to interpret these results, i t  should be considered that the velocity of 

etc, This data i s  interesting but i t  i s  certainly not con- IN ' 
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expansion starts slowly and increases with time to the predicted final rate. 

There are two more subjects which should be mentioned briefly. The average 

ionization at the center of the sphere i s  always higher in  the last, or the last few 

graphs, than the average ionization at the start of the expansion. This i s  rather 

surprising in consideration of the lower density and the corresponding lower pressure. 

No further discussion of this subject i s  given in  this report. There i s  another interest- 

ing fact. The pressure falls very precipitously just inside the cold shell. This pressure 

i s  not a proper scaler pressure. I t  i s  evidence that a tensor should represent the pressure. 
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PHASE THREE 

ADAPTATION OF A COMPUTER PROGRAM TO A SOLUTION FOR METEOROID 

BUMP E R P E N  E TRAT 1 0 N  

INTRODUCTION 

The objective of this study i s  to develop a reliab!e computer program for the 

penetration of a thin plate of aluminum by a sphere of quartz. The thyn plate of 

aluminum simulates a bumper plate for micrometeoroids. A good equation of state i s  

available b r  quartz as well as for aluminum. As the aluminum equation of state was 

derived, the equation for quartz i s  based on an experimentally determined Hugoniot 

curve. Then an equation of state of the Mie-Grunesen type was derived. In addi- 

tion, an adjustment in the computer program permits the quartz to have any desired 

porosity . 
At  the start of this study, a computer program was available for ths formation oi 

a crater by the impact of a porous sphere of rock at hypervelocity onto a thick slab of 

aluminum. Mathematically, the thick siab i s  a semi-infinite slab of aluminum. The 

available ccmputer program was formulated by Or. 8. A. Pardage, who i s  an ex-member 

of this group. Dr. Hardage i s  presently a member of the Geophysical Group for Phillips 

Petroleum Company. Hardage employed this program with considerable success to de- 

termine the size and shape of craters that Nere formed by hypervelocity impact. As wi l l  

be indicated, i t  was suitable for that purpose, but simplifying assumptions by Hardage 

were not appropriate for the penetration of a thin plate of aluminum. With his program, 

incorrect results were found for the penerration of a thin plate. 

The modifications to Hardage's program are being made entirely by Mr. Mark J. 

Hooker. The modifications have proved to be much more extensive than was anticipated. 

As a consequence, the final compufer prQgram i s  considered to be developing Mr. Hooker's 

capabilities far beyond those of the average studcr-t who writes a thesis as part of the 

requirements for an M. S. degree. Since this i s  Hooker'5 first major computer program, 

he has had considerable assistance beyond that which i s  received by the usual student. 

Dr. R. E. aruce helped i n  char,g;ng the differencing method. Dr. Hardage has given 
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major assistance i n  emphasizing the limitations of his prog):am, disclosing the exact 

nature of some assumptions that were not clear, and apprckJinr; some of the modifica- 

tions. 

The following discussion presents the basis for the changes in the computer pro- 

gram und comments on the results from these changes. Since the modifications vary so 

widely in importance and in  the difficulty of the actual change, they w i l l  not be listed 

separately in  this introduction. The changes w i l l  be grouped under headings which wil l 

indicate the basis for some of the corrections. 

TECHNIQUE TO DETERMINE MOMENTUM AT BOTTOM SURFACE OF THIN PLATE 

For generul information and to assist in  formulating the remainder of the problem, 

i t  i s  desired to be able to determine the momentum that reache< the bottom of the thin 

plate. The only part of immediate interest i s  from the init ial  shock when the sphere of 

rock i s  incident on the thin plate. The method of obtaining this information i s  described 

to assist in  interpreting the graphs. I >  hcs not been changed for i t  serves another I 7 -  

pose, i t  decreases the cost of trouble shooting other changes in the overall program. 

This last use i s  discussed before the momentum i s  considered. 

In the curves that have been presented and in  the one curve that i s  given in this 

report, no tension force i s  assumed to be exerted between the curvilinear cubes with 

which the computer deals. Compression 'vas always and still i s  in the computer program. 

This i s  a hold-over from the Hardage program. His program dealt only with compression 

i n  the formation of a crater. The spray that "flew up " from the impact zone was re- 

leased i f  the internal energy exceeded the energy to melt aluminum. These instructions 

have not been changed up to the present time. In the portion of the problem in which 

tension predominates, i t  permits the plate to disintegrate. There have been so many 

problems in the compression portion of the problem that this characteristic has been an 

aid. One advantage of this omission of rupture forces between the curvilinear cubes i s  

the considerable reduction in computer time and in computer printout while correcting 

other features in i h e  computer program. 

A second, more important advantage i s  that this technique, with proper sc;e- 

guards, may be employed to estimate the momentum that i s  involved in the reflection 
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of the init ial shock from the back face which i s  the bottom facc uf ;le thin plate. 

This may be illustrated by reference to the graph in Figure 17. On the bottom side uf 

the thin plate, there i s  a hemispherical gap of missing material between columns 10 

and 14, counted from right to left, Recall th2t the init ial bottom face wm horizontal. 

This region shows a part of the effect of the incident momentum of ti.e sphere of rock. 

When the rock reaches the plate, a shock starts from the init ial regim of contact between 

the sphere and the plate. The portion of this shock front, which enters the plate, reaches 

the rear face and "snaps off" a chunk of aluminum as i t  i s  reflected from the rear face. 

The missing material i s  the mass which i s  compressed as the init ial shock passes i t  on the 

path to the back face. This shock compression gives the material that energy which i s  

required to exceed the eneigy to melt the material. The vciocity of deparrure of this 

rock may be measured by observation of the graphs from cycles which precede the cycle 

that i s  presented in Figure 17. With th? mass and the velocity known, the momentum i s  

determined. This i s  an application of a simple, famiI:ar experiment in  physics. Suspend 

ten balls in  a line and i n  contact. Lift one ball and let i t  impact oil the second ball. 

Only the tenth ball, at the end of the line, flies up. 

ENERGY FOR HYPERVELOCITY SEPARATION OF FRAGMENTS 

OF THIN ALUMINUM PLATE 

In the preceding section, the force to rupture the aluminum w a s  mentioned. I t  was 

also indicated that no value for the strength of aluminum ;lac( been inserted i n  the pro- 

gram up to this time. The computer program must always consider that the break occurs 

over the surface of a curvilinear cube. The failure may be rupture in  tension, or i t  may 

be a luilure in  shear. There i s  some evidence i n  small legions that the failure mc,t approxi- 

mate to a plane; however, the most of the ruptures are very rough. This appears to elimi- 

nate shear as c major factor. From the observations, most of the ruptures appear to be in  

failures in tension. The strength in tension for rapid breaks i s  difficult to obtain, or 

recognize among the availuble data. The con,puter calculation for the graph in Figura 17 

was based on the assumption of an impact at 7.2 kilometers per second. 
. , I  I 

For practical purposes, a simple assumption Y;II uc aade in order to obtain a good 



Figure 17. A T; pica1 Graph of the Performance of the Computer Program for the Impact 

of a S2ie.e of 3 x k  (Quartz) on a Thin Plate oi 4lurnir.u~. The figure rep- 

resents --e si--z--:- z’-cr about BO cycles 0‘ *he compJ?er. “old the graph 

with ih€ -z:-s.*.es- EzJare; at the top. The - ;bL c l o d  s’de of - e graph rep- 

resents t 5 2  psiiior d t’-z dianster of the sprere at t i e  start of the impact. 

The sphr : ~c 5 5  ‘iav thz t ~ p  ‘0nc-d the botto- 0’ -+e graph. At the start 

of the i r z z c  

in the \e-r;col direction. The type and the amount of the information i s  indi- 

cated b j  +he ;allowing description oi the symbols. Only about half of the 

information per curvilinear cube i s  presented 

densitj, internal energy, kinetic energy, radial momentum, transverse 

momen turn, e tc . 

hemisphere extonds from 1 to 20 with a rodius of 10 spaces 

Omitted information includes 

In this graph, the symbois are l i s t e d  below. The symbol in each curva- 

linear cube. 

0 

0 Completely fi l led with rock 

X 

X Cdmpietely fi l led with aluminum 

II 

111 

Par:ly f i l led with rock, remainder vacuum 

Partly filled with aluminum, remainder vacuum 

Partly CiIled with aluminum, partly f i l led with rock 

Portly filled with alurninwn, partly f i l led with rock and 

partly filled with vacuum 

The fractional volume of aluminum and of rock i s  given in each case. 
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set of values fo i  the final solution. There are two variables to be considered, the rate 

of separation of the parts and the temperatcrre. High rates of separation wi l l  reduce the 

amount and perhaps even the possibility of ductile failures by the flow of the metd, or 

liquid. The britt!e failures are not of the type which occurs when a crack enters a highly 

stressed region so the crack constitutes a stress "riser". I t  i s  more likely that the pic 

wil l be simply jerked, or knocked apart. Without considering the effect of the rate in 

more detail, the effect of temperature i s  considered. 

s 

From the internal energy, that i s  i n  the print-out from the computer, the tempera- 

ture of the metal, or liquid wil l be known. Below the melting point, which i s  only 659.?C, 

the strength of alum;num decreases i n  a manner that i s  readily available from references. 

These values wi l l  probably be increased in  the final solution provided the effect of the high 

rate of separation i s  introduced. For tne first, approximate values, the !iquid wil l be re- 

quired to withstand some force i n  tension'. The exact value wi l l  be selected at the last 

minute. Above the boiling temperature of aluminum at 205?C, the aluminum i s  a plasma 

and wil l "f ly" apart. 



APPENDIX A 

Typical Substitution of Experimental Results to Evaluate Constants 

The evaluation of the constants by employing experimental data illustrates some features 

of the equation. For this purpose, an evaluation i s  given below. The general equation, 

Equation 10, has the following form 

The known constants and the known data from one experiment may be inserted to partially 

evaluate the constants, PI, P, and P,. 

PI ~ 7 . 5 3 1 3  x 10" 0 

The dependence of the second constant, P, on various values i s  given by the relation 

P 2 = 4 p - 3 A p ,  

A i s  assumed for this evaluation to have the value, 0.01 

o i s  the density of aluminum, 2.C75 

P; i s  the average density of the stacked sheets of paper, 0.4609 

Then the numerical value of Pa i s  given by the relatior 

P, = 11.040 -0.01382=11.0462 

The dependence of the third constant, P3, on various values i s  given by the relation 

P, = - 6  a s 

1. i s  cxumed for this evaluation to have the value, 0.0; 

S i s  token to be 1G grcms per crn" 

Then the numerical value of Pa i s  given by the relation 

P, =-0.6 
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Substitute these constants into the equation at the start of t h i s  Appendix. 

(P ) "  (9 x 11 .OM2 x 0.09525 + 4.2) + 7 8 x 7.5313 x 10"D = 
(P.? + p, T O Y  

Continue with the evaluation by suktituting for the remaining values of P, and P, 

(1 1.0462y 13.66935 7 11.0462 
6.025 x l 0 ' O  D = (4.6+11.0426~0.09525)" r t a (  4 . 6  ) 

Two features of this numericul relation should be noted. The first i s  the critical nature of the 

denominator in  the first term. The denominator i s  the difference between two relatively smull 

numbers. The difference i s  positive for this set of values, The other feature to note i s  that, 

in  the second term, the numerical value inside the bracket i s  negative. Since this negative 

value i s  raised to an even power, 8, the value of the second term i s  always positive. 

(11.0462)' 13.66535 7 
6.025 x 1e0D =t4 .6 + 1 .05215)y 2 4 + B  

Continue the simplification of this relation 

(11.0462)' 13.66535 7 11.0462\* 
24 ( 0.6 I 6.025 x leo 0 =- 

After a few arithmetical steps, the equation reduces to 

D = 2.716 


